

Systems Engineering and Design for Six Sigma:

The Missing Pieces within PDMA Best Practices

Robust Systems and Strategy 19 Edgewater Lane Taunton, MA 02780 877 875 5087 www.robuststrategy.com kevin_n_otto@yahoo.com

© 2005 Kevin Otto

Robust Systems and Strategy LLC

- Robust and reliable modular platform and technology development consulting
- Training, consulting and project work on all aspects of product development
 - Market strategy for new technology
 - Robustness and flexibility of new technology
 - Platform modularity definition
- Experience
 - NPD Consulting
 - Associate Professor, MIT
 - DFSS Six Sigma Master Black Belt

Product Design

Systematic Design
 New Product Development

DMA TOOLBO

PRODUCT PLATFORM

AND PRODUCT

in Reverse Engineerin

Overview

- Design for Six Sigma
- Modeling and Analysis in Systems Engineering
- Results

What is DFSS?

What if you were asked not to develop your product instantly, but to "do it right"?

A "shift from deterministic to a probabilistic design culture"

(from DFSS: 15 Lessons Learned; *Quality Progress*; Jan. 2002)

Historical Development Process

Development Process: Do it quick!

BUILD, TEST, FIX CYCLES!

Product Evolution

© 2005 Kevin Otto – 2005 – Slide # 5

Modern System Engineering

• Flowdown requirements allocation...

• ...Build up experimental verification

Problems...

• Built – Test – Fix, Build – Test – Fix, ...

Quality: What it Means

The cost of fixing a single defect:

- \$35 during the design phase
- \$177 before procurement
- \$368 before production
- \$17,000 before shipment
- \$690,000 on customer site

Mr. Hiroshi Hamada, President of Ricoh

Source: European Community Quarterly Review, Third Quarter 1996

Operations & Production Six Sigma

Generates "bottom line" financial value by eliminating Cost-Of-Poor-Quality (COPQ) in production & business transactions

It works

- GE published a net benefit of
 \$2 billion in its 1999 annual report
- Jack Welch, has said Six Sigma will save his company \$12 billion over five years and will add \$1 to its earnings per share

- Allied Signal has saved \$1.2 billion in direct costs since 1994
- Asean Brown Boveri (ABB) saved \$898 million each year for two years

Six Sigma Across the Enterprise

Improve Existing or New Products First?

• Bob Galvin, CEO of Motorola stated that...

If he would start six sigma again, he would focus on product development rather than manufacturing.

- Galvin's view is that mfg. process improvement is often the result of poor product development.
- With any corporate Six Sigma implementation, there occurs a natural evolution out into the organization
- R & D offers the highest leverage against the cost of poor quality. DFSS.

Design for Six Sigma

Generates "top line" financial value by providing new products with no problems and thereby generate new revenue.

Robust Systems and Strategy

© 2005 Kevin Otto - 2005 - Slide # 14

What's Different

- Statistical tools for design
- Eliminate or accommodate variability
- Functionally Parametric Designs Data and Equations
- Shared Focus Critical Parameter Management
- Process Scorecards
- Test Planning
- Subsystems first
- Experimentation over regions of the design space

Result:

No surprises, scrambles, ECOs at manufacturing launch.
 Confidence against any surprise at manufacturing launch.

Key Elements in Improving Product Development

- Schedule your project activities <u>with risk and backup</u> <u>planning</u> project management tools
- Map specific project activities to standard work with Phases & Gates of an <u>End-to-End Development Process</u>
- Insert appropriate <u>Tools & Best Practices</u> with your detailed Project Activities

1. Best Practices: Designed Experiments and Robust Design

<u>x: Component Level Specs.</u>

Rqmt

p: Mfg. Process Specs

 $Y = f(x_1, ..., x_n)$

the variability stackup!

S, C_p

2. Project Management: Where's the risk?

Manage not only time, but risk.

3. Product Development Process – The CDOV Process

- What will happen when product starts, and there is a problem with a component, assembly step, ...?
 - Off target, Too much variation
 - Acting differently than the development prototypes
- With DFSS, you know what to do $Y = f(x_1,...,x_n)$
 - You have pre-defined factors x to shift every response (Y or y)
 - Factors x that production and design agree to use

SYSTEMS ENGINEERING

Robust Systems and Strategy 19 Edgewater Lane Taunton, MA 02780 877 875 5087 www.robuststrategy.com kevin_n_otto@yahoo.com

© 2005 Kevin Otto

How do you verify modular designs?

• ABB Axial Fans: over 1 billion permutations

• Carrier Chillers: over 800 billion permutations

 Imagine you are responsible for launching this. Mechanical. Electronics. Software. Will all these future builds all work?

Systems Engineering

- Not just a single project launch
- How do you ensure complex engineering systems?
- Multiple disciplines
- Multiple sizes and configurations
- Interactions
- Trade-offs

State of the art: Managed Requirements

• Requirements documented to show traceability

- Linked to other requirements that it impacts
- Usually modeled in DOORS, CORE, etc.

• Not quantified. Only represents causality

Modern System Engineering

• Flowdown requirements allocation...

• ...Build up experimental verification

What happens...

Critical Parameter Management

- Critical: focus on only the critical 10% of all requirements
- Parameter: we will be quantitative, measurable and testable
- Management: we will improve, control, tradeoff with a total systems perspective

Criticality Scorecards

CFR Output Variability

CFR Output (Y)

$Y = f(x_1, \dots, x_n)$

Design For Six Sigma Scorecard

									Estimates Based on Mean Condition of x's and n's Listed Below						
Performa	nce		Т	ransfer Function	0,	Specification	า	Predic	ted Perform	ance Capa	bility		6σ Score		
Character	stic	Units	Y/N	Formula (enter below)	Target	USL	LSL	mean: µ	s.d.: σ	Short/Long	Confidence	Z	σ -shift	DPM	
Voltage	V		Y	2	2	2.1	1.9	2	0.008654			11.55	0.00	0.0	

	x's, Input Control Factors																	
Variables				Rar	nge	Contribution to Variability		Specification			Sample/Database Statistics					6σ Score		
No	Characteristic	Units		Min	Max	Sensitivity	%	USL	LSL		mean: µ	s.d. : σ	Shor	t/Long	Confidence	Z	σ-shift	DPM
1	X1	ohms		20	500	0	0.00%				20	0.04899				-408.25		100000.0
2	X2	ohms		2	50	-0.3108194	32.03%				6.433029	0.015758				-408.25		100000.0
3	X3	ohms		2	50	0.4176437	32.04%				4.788771	0.01173				-408.25		100000.0
4	X4	volts		1.2	30	0	0.00%				30	0.03873				-774.60		100000.0
5	X5	ohms		2	50	0	0.00%				2	0.004899				-408.25		100000.0
6	X6	ohms				0.7444038	32.04%			Ν	2.686714	0.006581				-408.25		1000000.0
7	I	amp				-10.449776	3.89%				0	0.000163				0.00		933192.8
8																		
9																		
10																		
11																		
12																		
13																		
14																		

CTS Control factors (x)

CTS Control factor Variability

- Typically just used for design
 - Requirements allocation
 - Optimization
- Not trusted for verification

Acoustic Noise Model

Subsystem	Stackup	Sensitivity		
Motor	8.14E-07 W (A wt)	-0.7 dBA		
Supports	2.55E-06 W (A wt)	-0.2 dBA		
Transmission	3.05E-05 W (A wt)	-1.6 dBA		
Frame	3.67E-07 W (A wt)	-1.3 dBA		
Cab	1.31E-08 W (A wt)	-2.0 dBA		
Doors	4.84E-09 W (A wt)	-0.6 dBA		
In-Car	50.6 dBA			

How accurate is the model?

- In product development, we use models to provide information about new designs
- Our model accuracy can only be assessed against applications of the model
 - Past product launches
 - Competitive products we have torn down

Previous Model Applications

Over the past 12 uses of the model, the following accuracies were experienced

Design	Model	Actual	Error	Variance	
A1	50.6	47.8	2.8	7.8	
A2	45.5	47.7	-2.2	4.8	
В	52.8	56.2	-3.4	11.6	
С	55.5	54.9	0.6	0.4	
D	67.9	63.9	4.0	16.0	
E1	42.0	47.5	-5.5	30.0	
E2	57.0	56.0	1.0	1.0	
E3	46.0	48.2	-2.2	4.8	
F	46.3	48.1	-1.8	3.2	
G1	51.2	52.6	-1.4	2.0	
G2	48.3	45.3	3.0	9.0	
G3	57.6	55.0	2.6	6.8	
	RMS N	Nodel Error	±2.8		
		% Error	±6%		

Statistics!

- A model's accuracy *can* be characterized based upon past uses
- Two factors to consider
 - Confidence: how far are the predictions from the measurements? $\pm \epsilon$ (accuracy)

- **Power**: is there a sufficient set of tests (domain) for the accuracy characterization to be applicable?

Design Span and Model Error

Past Designs... ... Future Build

Range where the prototype build will perform

What does this mean for the requirement flowdown?

Subsystem	Stackup	Sensitivity
Motor	8.14E-07 W (A wt)	-0.7 dBA
Supports	2.55E-06 W (A wt)	-0.2 dBA
Transmission	3.05E-05 W (A wt)	-1.6 dBA
Frame	3.67E-07 W (A wt)	-1.3 dBA
Cab	1.31E-08 W (A wt)	-2.0 dBA
Doors	4.84E-09 W (A wt)	-0.6 dBA
In-Car	50.6 dBA	

Model Error **± 2.8** TOTAL MODEL VARIANCE (dBA) **± 6%** TOTAL MODEL % VARIANCE Now Cascade the Error!

What are you going to do about that error?

- You have a model...
- You know the ± error on Y...
- ...So calculate ± range on X's!

Target Cascading

• Use to cascade targets and plan for variation

Subsystem Concept Phase Efforts

Y

 $3\pm Y$

- Design the nominal system (Design A)
 - One that meets requirements on paper
- Design a "backup-plan" system (Design B)
 - One that meets requirements ± the model error

Every subsystem team must create these <u>two</u> designs.

Pre-Calculate Your Future Iteration!

Design a system with target = (nominal – sigma)

The "Math"...

• We choose two designs A and B such that they cover the model error ϵ . Since

$$\left| y_{\rm A} - y_{\rm B} \right| = \varepsilon$$

• Then the future design changes in the prototype *will be* scoped within

$$\vec{x}_{A} \leq \vec{x}_{rebalanced} \leq \vec{x}_{B}$$

with probability $68\% (\pm 1 \text{ sigma})$.

System Integration

• Use models to eliminate prototype iterations

This works...

- In my experience, this easily cuts verification time in half
- In my experience, this improves reliability and robustness
 - Do not rely on fixes or service procedures
 - Design in capability

How do you do this with Modular Platforms?

Robust Systems and Strategy 19 Edgewater Lane Taunton, MA 02780 877 875 5087 www.robuststrategy.com kevin_n_otto@yahoo.com

© 2005 Kevin Otto

Issue: Modules are Used in Many Different Product Configurations

• Which module configurations do you analyze?

• Which do you build to verify the model?

• Which do you use to define the range of X?

• When do you do what?

Which module combinations do you analyze?

• Virtually build and analyze <u>all</u> of them!

Computing is cheap

 Build the IT infrastructure to batch job the virtual simulation of every module combination as you make design changes Which do you verify with Hardware?

- The corner cases of performance...
- For each Y, using your model calculate
 - System configurations X: requirement Y is max and min

- For each module, using your model calculate
 - System configurations X: interface y is max and min

- Build this smaller set of modules for prototyping
- Assemble the corner combinations
- Be prepared to build each module configuration X to ± the widest model error range of all Y and y

Limits of Performance

- Use your model to calculate the product variant with the maximum/minimum of Y
- Build these configurations
- Propagate your model error $\pm \epsilon_{\gamma}$ onto the design X as before
 - Define Systems (X_A, X_B)
 - This defines modules (x_A, x_B)

© 2005 Kevin Otto - 2005 - Slide # 48

Corner Cases of Module Requirements

- Use your model to calculate the module variants with the maximum/minimum of the module requirements y
- Build these modules
- Assemble them into the system configurations per the model

- Propagate your model error $\pm \epsilon_y$ onto the module designs x as before
 - Defines modules (x_A, x_B)
 - This defines systems (X_A, X_B)

Modular Systems Design and Models

© 2005 Kevin Otto - 2005 - Slide # 50

This works...

- Cuts verification time in half
- Enables modularity of mechanical systems
 - Assurance the module will work across variants
 - Even the worst case applications
 - Even with interfaces carrying power
- Improves reliability and robustness
 - Do not rely on fixes or service procedures
 - Design in capability

Problems You Will Encounter

- Lack of executive support
- Yet another program of the month
- We already do this
- We don't need to do this
- Hired external design firms are incapable

Success Factors

- Executive champion
 - One who believes and is staking their job on DFSS success
 - Clears obstacles faced by project champion
- Project Manager
 - One who believes and is staking their job on DFSS success
 - Person skills: can attain buy-in from support functions
- DFSS Master Black Belt
 - Training and consulting, reports to Executive and PM
 - Responsible for launch quality and lifetime reliability
 - Ensure effective tool use
- Modeling Manager hip-to-hip with Project Manager
- Defined Development Process
- Test facilities, Field data collection, Supply chain support

QUESTIONS?

Robust Systems and Strategy 19 Edgewater Lane Taunton, MA 02780 877 875 5087 www.robuststrategy.com kevin_n_otto@yahoo.com

© 2005 Kevin Otto